Math, asked by aditisahi, 11 months ago

if x=a(θ + sinθ) y= a(1+ cosθ) prove d2y/dx2 = -a/y^2

Answers

Answered by Anonymous
0

Step-by-step explanation:

x = a(Q + sinQ)

dx/dQ = a(1 + cosQ)

y = a(1 + cosQ)

dy/dQ = -asinQ

dy/dx = -asinQ/a(1+cosQ) (समी.(1)से)

= -sinQ/1+cosQ

= -asinQ/y

Answered by sandy1816
0

Step-by-step explanation:

given

x = a( \theta + sin \theta) \\ y = a(1 + cos \theta) \\  \\  \frac{dx}{d \theta}  = a(1 + cos \theta) \\  \\  \frac{dy}{d \theta}  = a( - sin \theta) \\  \\  \frac{dx}{dx}  =  \frac{a( - sin \theta)}{a(1 + cos \theta)}  \\  \\  =  \frac{ - sin \theta}{1 + cos \theta}

 \\ \\ \frac{ {d}^{2} y}{d {x}^{2} }  =  \frac{d}{dx} ( \frac{dy}{dx} ) \\  \\  =  -  \frac{d}{dx} ( \frac{sin \theta}{1 + cos \theta} ) \\  \\  =   - ( \frac{(1 + cos \theta)cos \theta \frac{d \theta}{dx}  - sin \theta( - sin \theta) \frac{d \theta}{dx} }{( {1 + cos \theta)}^{2} }  ) \\  \\  =  - ( \frac{cos \theta \frac{d \theta}{dx  }  +  {cos}^{2} \theta \frac{d \theta}{dx}  +  {sin}^{2}  \theta \frac{d \theta}{dx}  }{( {1 + cos \theta)}^{2} } ) \\  \\  =  - ( \frac{cos \theta \frac{d \theta}{dx} +  \frac{d \theta}{dx}  }{( {1 + cos \theta)}^{2} } )

 =  - ( \frac{(1 + cos \theta) \frac{d \theta}{dx} }{( {1 + cos \theta)}^{2} } ) \\  \\  =  - ( \frac{ \frac{d \theta}{dx} }{1 + cos \theta} ) \\  \\  =  - ( \frac{ \frac{1}{a(1 + cos \theta)} }{1 + cos \theta} ) \\  \\  =   \frac{ - 1}{a(1 + cos \theta)}  \\  \\  =  \frac{ -  {a}^{} }{ {a}^{2}( {1 + cos \theta)}^{2}  }  \\  \\  =  \frac{ - a}{ {y}^{2} }

Similar questions