Math, asked by bini34713, 1 year ago

If X=(ab)^1/3-(ab)^(-1/3), prove that x^3+1/ab+3x=ab

Answers

Answered by prabalbarahi005
9

Step-by-step explanation:

x = (ab)^{\frac{1}{3} } - (ab)^{\frac{-1}{3} } ...(i)

Cubing both sides,

x³ = ((ab)^{\frac{1}{3} } - (ab)^{\frac{-1}{3} }

x³ = ((ab)^{\frac{1}{3} })³ - ((ab)^{\frac{-1}{3} })³ - 3 . (ab)^{\frac{1}{3} }.(ab)^{\frac{-1}{3} } . ((ab)^{\frac{1}{3} } - (ab)^{\frac{-1}{3} })

x³ = ab - (ab)^{-1} - 3 . (ab)^{\frac{1}{3}-\frac{1}{3} } . x

x³ = ab - \frac{1}{ab} - 3.1.x

x³ + \frac{1}{ab} +3x = ab

Proved

Answered by nimeshyadav2007
0

Answer:

Step-by-step explanation:

Taking LHS,

= x^3+1/ab+3x

= {(ab)^1/3 - 1/(ab)^1/3}^3 + 3{(ab)^1/3 - 1/(ab)^1/3} + 1/ab

= (ab)^1/3*3 - 1/(ab)^1/3*3 - 3 {(ab)^ 1/3 - 1/(ab)^1/3 } + 3x +1/(ab)

= ab - 1/ab -3x +3x +1/(ab)

= ab

= proved

Similar questions