Math, asked by ikayeps1986, 9 months ago

If x and beta are the zeros of the quadratic polynomial p(x) =3xsquare-4x+1 find x quadratic polynomial whose zeros are xsquare by beta and beta square by x

Answers

Answered by z9756000
1

Answer:

Step-by-step explanation:

f(x)=3x  

2

−7x−6

Which is of the from ax  

2

+bx+c

⇒a=3,b=−7,c=−6

Now, α+β=−  

a

b

​  

=  

3

−(−7)

​  

 

α+β=  

3

7

​  

....(1)

and αβ=  

a

c

​  

=  

3

−6

​  

 

αβ=−2...(2)

(1) α  

2

+β  

2

=(α+β)  

2

−2α+β

=(  

3

7

​  

)  

2

−2(−2)     [ from (1) & (2)]$$

=  

9

49

​  

+4=  

9

49+36

​  

=  

9

85

​  

 

α  

2

β  

2

=(αβ)  

2

=(−2)  

2

=4

 

The pohynomical whose roots are α  

2

,β  

2

 is given by , x  

2

−(sumofroots)x+productofroots

=x  

2

−  

9

85x

​  

+4

=  

9

9x  

2

−85x+36

​  

 

=  

9

1

​  

(9x  

2

−85x+36)

(2) (2α+3β)+(3α+2β)=5α+5β

=5(α+β)

=5⋅  

3

7

​  

 

=  

3

35

​  

 

(2α+3β)+(3α+2β)=6α  

2

4αβ+9αβ+6β  

2

 

=6(α  

2

+β  

2

)+13αβ

=6{(α+β)  

2

−2αβ}+Bαβ

=6(α+β)  

2

−12αβ+Bαβ

=6(α+β)  

2

+αβ

=6(  

3

7

​  

)  

2

+(−2)

=6⋅  

9

49

​  

−2

=  

3

98

​  

−2

=  

3

98−6

​  

 

=  

3

92

​  

 

the required polynomial whose you are (2α+3β) and (3α+2β) is

x  

2

−  

3

35

​  

x+  

3

92

​  

 

=  

3

1

​  

(3x  

2

−35x+92)

Similar questions