Math, asked by pandey8270, 1 year ago

If x and y are acute angles such that sin x=1/√5 and sin y=1/√10 , prove that (x + y) = π/4.

Answers

Answered by boffeemadrid
14

Answer:

Step-by-step explanation:

Taking sin(x+y)=sinxcosy+cosxsinyand substituting the values of sinx,cosx, siny,sinx, we get

sin(x+y)=(\frac{1}{\sqrt{5}})(\frac{3}{\sqrt{10}})+(\frac{2}{\sqrt{5}})(\frac{1}{\sqrt{10}})

=(\frac{1}{\sqrt{2}})(\frac{3}{5})+(\frac{1}{\sqrt{2}})(\frac{2}{5})

=\frac{1}{\sqrt{2}}(\frac{3}{5}+\frac{2}{5})

=\frac{1}{\sqrt{2}}(1)

Therefore, sin(x+y)=\frac{1}{\sqrt{2}}(1)

x+y=sin^{-1}(\frac{1}{\sqrt{2}})

x+y=\frac{{\pi}}{4}

Hence proved.

Similar questions