If x and y are the numbers of possibilities thata can assume such that the unit digit a and a cube are same and unid digit of a square and acube are same respectively then value of x- y is
Answers
Answered by
0
Hi there!
Here's the answer:
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•
¶¶¶ Step-1: Find Values of x and Y
There exists 10 possible cases for Unit digit of 'A':
Unit digit of :
A _____ A² ______ A³
0 ______ 0 _______ 0
1 ______ 1 ________ 1
2 ______ 4 _______ 8
3 ______ 9 _______ 7
4 ______ 6 _______ 4
5 ______ 5 _______ 5
6 ______ 6 _______ 6
7 ______ 9 _______ 3
8 ______ 4 _______ 2
9 ______ 1 _______ 9
Now,
x = No. of possible cases in which unit digit of A and A³ are the same
When Unit digit of A ={0, 1, 4, 5, 6}, Unit digit of A³ remains unchanged.
•°• x = 6
y= No. of possible cases in which unit digit of A² and A³ are the same
This is possible are when Unit digit of A = {0, 1, 5, 6}
•°• y = 4
¶¶¶ Step- 2: Find x-y
x - y = 6 -4 = 2
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•
¢#£€®$
:)
Hope it helps
Here's the answer:
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•
¶¶¶ Step-1: Find Values of x and Y
There exists 10 possible cases for Unit digit of 'A':
Unit digit of :
A _____ A² ______ A³
0 ______ 0 _______ 0
1 ______ 1 ________ 1
2 ______ 4 _______ 8
3 ______ 9 _______ 7
4 ______ 6 _______ 4
5 ______ 5 _______ 5
6 ______ 6 _______ 6
7 ______ 9 _______ 3
8 ______ 4 _______ 2
9 ______ 1 _______ 9
Now,
x = No. of possible cases in which unit digit of A and A³ are the same
When Unit digit of A ={0, 1, 4, 5, 6}, Unit digit of A³ remains unchanged.
•°• x = 6
y= No. of possible cases in which unit digit of A² and A³ are the same
This is possible are when Unit digit of A = {0, 1, 5, 6}
•°• y = 4
¶¶¶ Step- 2: Find x-y
x - y = 6 -4 = 2
•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•
¢#£€®$
:)
Hope it helps
Similar questions