Math, asked by shivanshdixit100, 10 months ago

If x and y are the zeroes of p(t)=t^2-5t+4 find 1/x - 1/y - 2x - y

Answers

Answered by fab13
0

p(t) =  {t}^{2}  - 5t + 4 \\  =  >  {t}^{2}  - 5t + 4 = 0 \\  =  >  {t}^{2}  - 4t - t + 4 = 0 \\  =  > t(t - 4) - 1(t - 4) = 0 \\  =  > (t - 4)(t - 1) = 0

either,

t - 4 = 0 \\  =  > t = 4

or,

t - 1 = 0  \\  =  > t = 1

X and Y are the zeroes of t

therefore,

first case

x = 4 \\ y = 1

 \frac{1}{x}  -  \frac{1}{y}  - 2x - y \\  =  \frac{1}{4}  -  \frac{1}{1}  - 2 \times 4 - 1 \\  =  \frac{1}{4}  - 1 - 8 - 1 \\  =  \frac{1}{4} - 10 \\  =  \frac{1 - 40}{4}   \\  =  \frac{ - 39}{4}

2nd case

x = 1 \\ y = 4

 \frac{1}{x}  -  \frac{1}{y}  - 2x - y \\  =  \frac{1}{1}  -  \frac{1}{4}  - 2 \times 1 - 4 \\  = 1 -  \frac{1}{4}  - 2 - 4 \\  =  - 5 -  \frac{1}{4}  \\  =  \frac{ - 20 - 1}{4}  \\  =  \frac{ - 21}{4}

so either the value is

 \frac{ - 39}{4} or \:  \frac{ - 21}{4}

Similar questions