Physics, asked by puppyma1890, 1 year ago

if





x and y are two positive numbers such that x : y = 3 : 5 and 1/x-1/y=2/75 Find x + y

Answers

Answered by Infinitus
0
Given x/y=3/5

Therefore y=5x/3


Now, 1/x-1/y=2/75
It means 1/x-1/(5x/3)=2/75


1/x - 3/5x=2/75

(5-3)/5x=2/75

75=5x


X=15

Y=75/3
Answered by payalchatterje
0

Answer:

Required value of x+y is 40.

Explanation:

Given, x:y =3:5

Let x be 3a and y be 5a.

So,

 \frac{1}{x}  -  \frac{1}{y}  =  \frac{2}{75}  \\  \frac{y - x}{xy}  =  \frac{2}{75}

We are putting value of x and y,

 \frac{5a - 3a}{5a \times 3a}  =  \frac{2}{75}  \\  \frac{2a}{15 {a}^{2} }  =  \frac{2}{75}  \\  \frac{1}{15a}  =  \frac{1}{75}  \\ 15a = 75 \\ a =  \frac{75}{15}  \\ a = 5

So, value of x is (3×5) = 15 and value of y is (5×5) = 25.

Now,we want to find value of x + y

We are putting value of x and y,

 = 25 + 15

Adding 25 and 15,

 = 40

This is a problem of Algebra.

Some important Algebra formulas,

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ2

Similar questions