Math, asked by kaynat87, 9 months ago

If x and y are two positive real numbers such that

8x^3 + 27y^3 = 730

2x^2y + 3xy^2 = 15

then show that 2x + 3y = 10


HOW M I LOOKING GUYS ???​

Attachments:

Answers

Answered by shadowsabers03
2

Given,

\displaystyle\longrightarrow\sf{8x^3+27y^3=730\quad\quad\dots(1)}

And,

\displaystyle\longrightarrow\sf{2x^2y+3xy^2=15\quad\quad\dots(2)}

Add (1) to 18 times (2), i.e.,

\displaystyle\longrightarrow\sf{(1)+18\times(2)}

\displaystyle\longrightarrow\sf{8x^3+27y^3+18(2x^2y+3xy^2)=730+18\times15}

\displaystyle\longrightarrow\sf{8x^3+36x^2y+54xy^2+27y^3=730+270}

\displaystyle\longrightarrow\sf{(2x)^3+3\cdot(2x)^2\cdot3y+3\cdot2x\cdot(3y)^2+(3y)^3=1000}

\displaystyle\longrightarrow\sf{(2x+3y)^3=10^3}

\displaystyle\longrightarrow\sf{\underline{\underline{2x+3y=10}}}

Done!

Answered by aliabhatt72
4

Answer:

sweet pic kaynat ek dam heroine lg rhi ho

Step-by-step explanation:

Wow

Similar questions