Math, asked by Amanakash1, 1 year ago

if x and y are two positive real numbers such that 8x³+27y³=730and 2x²y+3xy²=15 then find 2x+2y=?

Answers

Answered by Anant02
5

 8 {x}^{3}  + 27 {y}^{3}  = 730 \\  {(2x + 3y)}^{3}  = 8 {x}^{3}  + 27 {y}^{3}   + 18xy(2x + 3y) \\  {(2x + 3y)}^{3} = 730 + 18xy(2x + 3y)  \\ 2 {x}^{2} y + 3x {y}^{2}  = 15 \\ xy(2x + 3y) = 15 \\ (2x + 3y) =  \frac{15}{xy}   \\  { (\frac{15}{xy}) }^{3} = 730 + 18xy \times  \frac{15}{xy} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  730 + 270 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 1000  \\  \frac{15}{xy}  = 10 \\ xy  =  \frac{3}{2}   \\ (2x + 3y) = 15 \times 2 \div 3 = 10\\ 2x + 3y = 10
Similar questions