Math, asked by manjithams2004, 5 months ago

If X and Y are two sets such that n(X) = 17 ,

n(Y) = 23 and n (XUY ) = 38 , find n( X ∩ Y )​

Answers

Answered by allysia
17

Answer:

n(XUY) = n(X) + n(Y) - n(X∩Y)

Inserting the values,

38= 17+23 -n(X∩Y)

-n(X∩Y)= 38-40 = -2

n(X∩Y) = 2

Answered by DILhunterBOYayus
11

Step-by-step explanation:

\sf{\bold{\blue{\underline{\underline{Given}}}}}

  1. If X and Y are two sets
  2. n(X) = 17n
  3. n(Y) = 23
  4. n(XUY ) = 38 ⠀⠀⠀

\sf{\bold{\red{\underline{\underline{To\:Find}}}}}

find n( X ∩ Y )⠀?⠀⠀

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

Here,

\rightsquigarrow n(X) = 17 ,

\rightsquigarrow n(Y) = 23

\rightsquigarrow n(XUY ) = 38⠀⠀⠀

we know that,

\boxed{\underline{\underline{\sf\color{fuchsia}{n(XUY )=n(X)+n(Y)- n( X ∩ Y )}}}}

so,

According to the question,

\bold{ 38=17+23-n(X∩Y) } 

\bold{ 38+40-n(X∩Y)  } 

\bold{n(X∩Y)=40-2  } 

\mapsto\tt{n(X∩Y)=2 }      

\sf{\bold{\green{\underline{\underline{Answer}}}}}

\therefore  so the value of n(X∩Y)=2

Similar questions