if x=asec teta+b tan teta,y=a tan teta +bsec teta then prove that x^-y^=a^-b^
Answers
Answered by
9
________________________
Question
If x = a secθ + b tanθ , y = a tanθ + b secθ
then prove that x² - y² = a² - b² .
Solution
Given
x = a secθ + b tanθ
y = a tanθ + b secθ
To prove
x² - y² = a² - b²
Proof
Taking LHS
LHS = x² - y²
= (a secθ + b tanθ)² - ( a tanθ + b secθ)²
=a²sec²θ+b²tan²θ+2 ab secθtanθ - (a²tan²θ+b²sec²θ+2 ab tanθsecθ
= a²sec²θ +b²tan²θ +2 ab secθ tanθ - a²tan²θ -b²sec²θ -2 ab tanθsecθ
= a²sec²θ + b²tan²θ -a²tan²θ - b²sec²θ
= a²( sec²θ -tan²θ) + b²(tan²θ - sec²θ )
(by trigonometric identity
sec²α - tan²α = 1 ,and
tan²α - sec²α = -1 ., so we will get)
= a² ( 1 ) + b² ( - 1 )
= a² - b²
= RHS
LHS = RHS
Proved.
_______________________
Answered by
4
Answer:
My self Amit
Class 10
Step-by-step explanation:
☺️☺️☺️☺️☺️☺️☺️
Similar questions