If x=asin2t(1+cos2t) and y=b cos2t(1-cos2t) find dy/dx at t= pi/4
Answers
Step-by-step explanation:
x = asin2t ( 1+ cos2t)
we know,
cos2t = 2cos²t - 1
cos2t +1 = 2cos²t
1+cos2t = 2cos²t
x = asin2t ( 1+ cos2t) = asin2t x 2cos²t
x = asin2t x 2cos²t
Differentiation wrt x
dx/dt = d/dt (asin2t x 2cos²t)
we know ,
y= u. v then
dy/dx = u.( dv/dx) + v. (du/dx)
=)) d/dt (asin2t x 2cos²t)
=)) asin2t x 4cost x ( -sint)
+ 2cos²t x (acos2t) (2)
=)) -sint x asin2t x 4cost
+ 4 cos²t x acos2t
=)) 4cos²t x acos2t
- sint x asin2t x 4cost
=)) 4acost ( cost x cos2t
- sint x sin2t )
dx/dt = 4acost ( cost x cos2t - sint x sin2t )
________________________
Now,
y=b cos2t(1-cos2t)
we know,
cos2t = 1 - 2sin²t
take (-) on both the sides
-cos2t = - (1 - 2sin²t)
-cos2t = -1 + 2sin²t
- cos2t + 1 = 2sin²t
1 - cos2t = 2sin²t
y = b cos2t(1-cos2t)=bcos2t x 2sin²t
y = bcos2t x 2sin²t
Differentiation wrt t
dy / dt = d/dt ( bcos2t x 2sin²t )
=)) bcos2t x 4sint x (cost )
+ ( 2sin²t x ( -bsin2t) x (2)
=)) bcos2t x 4sint x cost
- 4 sin²t x bsint
=)) 4bsint (cos2t x cost
- sint x sin2t)
dy /dt = 4bsint (cos2t x cost
- sint x sin2t)
______________________
we know, dy/dx = (dy/dt)/(dx/dt)
therefor,
dy/dx=
=)) (4bsint (cos2t x cost - sint x sin2t) ) / (4acost ( cost x cos2t
- sint x sin2t ))
= )) (4bsint (cos2t x cost - sint x
sin2t)) / (4a cost ( cos2t x cost
-sint x sin2t) )
= )) 4b sint / 4a cost
= )) ( b/a ) tant
here, we have to find dy/dx at t= π/4t = π/4
= )) ( b/a) tan ( π/4 )
= )) (b/a) ( 1) ............
.................(since tan(π/4 ) = 1)
= )) b/a
dy/dx = b/a
Answer:
Step-by-step explanation:
Given :
Now
First for
Now for
Now for
Here we put ratios values
Thus we get answer.