Math, asked by Suyash12345, 1 year ago

If x=asinA+bcosA and y=acosA-bsinA,prove that x^2+y^2=a^2+b^2

Answers

Answered by ColinJacobus
17

Answer:  The proof is done below.

Step-by-step explanation:  We are given that

x=a\sin A+b\cos A,~~~~~y=a\cos A-b\sin A.

We are to prove that

x^2+y^2=a^2+b^2.

We will be using the following trigonometric identity :

\cos^2A+\sin^2A=1.

We have

L.H.S.\\\\=x^2+y^2\\\\=(a\sin A+b\cos A)^2+(a\cos A-b\sin A)^2\\\\=a^2\sin^2A+2ab\sin A\cos A+b^2\cos^2A+a^2\cos^2A-2ab\cos A\sin A+b^2\sin^2A\\\\=a^2(\sin^2A+\cos^2A)+b^2(\cos^2A+\sin^2A)\\\\=a^2\times1+b^2\times1\\\\=a^2+b^2\\\\=R.H.S.

Thus, we get

x^2+y^2=a^2+b^2.

Hence proved.

Answered by mysticd
2

Answer:

Given x=asinA+bcosA ---(1)

and

y=acosA-bsinA ------(2)

LHS = +

=(asinA+bcosA)²+(acosA-bsinA)²

= sin²A+2absinAcosA+cos²A

+cos²A-2absinAcosA+b²sin²A

/* By algebraic identities:

i) (m+n)² = +2mn+

ii)(m-n)² = -2mn+ */

= (sin²A+cos²A)+(cos²A+sin²A)

= +

/* By Trigonometric identity:

cos²A+sin²A = 1 */

= RHS

Similar questions