Math, asked by jainmanyata01, 2 months ago

If x/(b-c)(b+c) = y/(c-a)(c+a) = z/(a−b)(a+b) prove that x + y + z =0​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that,

 \sf \: \dfrac{x}{(b - c)(b + c)}  = \dfrac{y}{(c - a)(c + a)}  = \dfrac{z}{(a - b)(a + b)}

 \sf \: Let \:  \: \dfrac{x}{ {b}^{2} -  {c}^{2}  }  = \dfrac{y}{ {c}^{2} -  {a}^{2}  }  = \dfrac{z}{ {a}^{2}  -  {b}^{2} }  = k

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \:  \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}

\red{\rm :\longmapsto\:x = k( {b}^{2} -  {c}^{2}) -  -  - (1)} \\ \red{\rm :\longmapsto\:y = k( {c}^{2} -  {a}^{2}) -  -  - (2)} \\ \red{\rm :\longmapsto\:z = k( {a}^{2} -  {b}^{2}) -  -  - (3)}

On adding equation (1),(2) and (3), we get

\rm :\longmapsto\:x + y + z = k( \red{ \cancel {b}^{2} } - \blue{ \cancel {c}^{2}}  + \blue{ \cancel {c}^{2} } - \green{ \cancel {a}^{2}  }+ \green{ \cancel {a}^{2} } - \red{ \cancel {b}^{2} })

\bf\implies \:x + y + z = 0

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information

\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d}  \: then

\boxed{ \sf \: \dfrac{a}{c}  = \dfrac{b}{d}  \:  \:  \: (alternendo)}

\boxed{ \sf \: \dfrac{b}{a}  = \dfrac{d}{c}  \:  \:  \: (invertendo)}

\boxed{ \sf \: \dfrac{a + b}{b}  = \dfrac{c + d}{d}  \:  \:  \: (componendo)}

\boxed{ \sf \: \dfrac{a  -  b}{b}  = \dfrac{c  -  d}{d}  \:  \:  \: (dividendo)}

\boxed{ \sf \: \dfrac{a}{b}  = \dfrac{c}{d}  = \dfrac{a + c}{b + d}  \:  \:  \: (addendo)}

Similar questions