if x/b+c=y/c+a=z/a+b prove that a/y+z-x=b/z+x-y=c/x+y-z
Answers
Answered by
12
Let x/b+c=y/c+a=z/a+b = k
then
x=(b+c)k ...(1)
y=(c+a)k ...(2)
z=(a+b)k ...(3)
to prove
(b-c) x+(c-a) y+(a-b) z=0
L.H.S. = (b-c) x+(c-a) y+(a-b) z
= (b-c) (b+c) k + (c-a) (c+a)k + (a-b) (a+b)k by eq (1), (2) & (3)
= k [(b-c) (b+c) + (c-a) (c+a) + (a-b) (a+b) ]
=k[b^2 – c^2 + c^2 – a^2 + a^2 – b^2]
= k [0]
= 0
=R.H.S.
then
x=(b+c)k ...(1)
y=(c+a)k ...(2)
z=(a+b)k ...(3)
to prove
(b-c) x+(c-a) y+(a-b) z=0
L.H.S. = (b-c) x+(c-a) y+(a-b) z
= (b-c) (b+c) k + (c-a) (c+a)k + (a-b) (a+b)k by eq (1), (2) & (3)
= k [(b-c) (b+c) + (c-a) (c+a) + (a-b) (a+b) ]
=k[b^2 – c^2 + c^2 – a^2 + a^2 – b^2]
= k [0]
= 0
=R.H.S.
yashdalui1992:
thank you bro
Similar questions