Math, asked by grrygll8976, 1 year ago

if x bar is the arithmetic mean of n observations x1,x2,x3,.....,xn,then prove that value of (x1-xbar)+(x2-xbar)+(xn-xbar)= 0 MATH QUESTION IF X BAR IS THE EARTH MATIC MEAN OF AN OBSERVATION X1 X2 X3 DASH DASH DASH ACTION THEN PROVE THAT X 1 - X SQUARE + X 2 - X SQUARE + X 3 - XY + 10 DAYS IF X MINUS X BAR IS EQUAL TO ZERO








Answers

Answered by abhi178
27

a/c to question,

arithmetic mean of x_1,x_2,x_3.... x_n is \bar{x}

so, \bar{x}=\frac{x_1+x_2+x_3+....+x_n}{n}

\implies x_1+x_2+x_3+....+x_n=n\bar{x}......(1)

now, LHS=(x_1-\bar{x})+(x_2-\bar{x})+(x_3-\bar{x})+.......+(x_n-\bar{x})

= (x_1+x_2+x_3+.....+x_n)-(\bar{x}+\bar{x}+\bar{x}+.....+\bar{x})

= (x_1+x_2+x_3+....+x_n)-n\bar{x}

from equation (1),

= n\bar{x}-n\bar{x}=0=RHS

Answered by lakshaygautam7
3

Answer:

/c to question,

arithmetic mean of x_1,x_2,x_3x

1

,x

2

,x

3

.... x_nx

n

is \bar{x}

x

ˉ

so, \bar{x}=\frac{x_1+x_2+x_3+....+x_n}{n}

x

ˉ

=

n

x

1

+x

2

+x

3

+....+x

n

\implies x_1+x_2+x_3+....+x_n=n\bar{x}⟹x

1

+x

2

+x

3

+....+x

n

=n

x

ˉ

......(1)

now, LHS=(x_1-\bar{x})+(x_2-\bar{x})+(x_3-\bar{x})+.......+(x_n-\bar{x})LHS=(x

1

x

ˉ

)+(x

2

x

ˉ

)+(x

3

x

ˉ

)+.......+(x

n

x

ˉ

)

= (x_1+x_2+x_3+.....+x_n)-(\bar{x}+\bar{x}+\bar{x}+.....+\bar{x})(x

1

+x

2

+x

3

+.....+x

n

)−(

x

ˉ

+

x

ˉ

+

x

ˉ

+.....+

x

ˉ

)

= (x_1+x_2+x_3+....+x_n)-n\bar{x}(x

1

+x

2

+x

3

+....+x

n

)−n

x

ˉ

from equation (1),

= n\bar{x}-n\bar{x}=0=RHSn

x

ˉ

−n

x

ˉ

=0=RHS

Similar questions