if x bar is the arithmetic mean of n observations x1,x2,x3,.....,xn,then prove that value of (x1-xbar)+(x2-xbar)+(xn-xbar)= 0 MATH QUESTION IF X BAR IS THE EARTH MATIC MEAN OF AN OBSERVATION X1 X2 X3 DASH DASH DASH ACTION THEN PROVE THAT X 1 - X SQUARE + X 2 - X SQUARE + X 3 - XY + 10 DAYS IF X MINUS X BAR IS EQUAL TO ZERO
Answers
Answered by
27
a/c to question,
arithmetic mean of .... is
so,
......(1)
now,
=
=
from equation (1),
=
Answered by
3
Answer:
/c to question,
arithmetic mean of x_1,x_2,x_3x
1
,x
2
,x
3
.... x_nx
n
is \bar{x}
x
ˉ
so, \bar{x}=\frac{x_1+x_2+x_3+....+x_n}{n}
x
ˉ
=
n
x
1
+x
2
+x
3
+....+x
n
\implies x_1+x_2+x_3+....+x_n=n\bar{x}⟹x
1
+x
2
+x
3
+....+x
n
=n
x
ˉ
......(1)
now, LHS=(x_1-\bar{x})+(x_2-\bar{x})+(x_3-\bar{x})+.......+(x_n-\bar{x})LHS=(x
1
−
x
ˉ
)+(x
2
−
x
ˉ
)+(x
3
−
x
ˉ
)+.......+(x
n
−
x
ˉ
)
= (x_1+x_2+x_3+.....+x_n)-(\bar{x}+\bar{x}+\bar{x}+.....+\bar{x})(x
1
+x
2
+x
3
+.....+x
n
)−(
x
ˉ
+
x
ˉ
+
x
ˉ
+.....+
x
ˉ
)
= (x_1+x_2+x_3+....+x_n)-n\bar{x}(x
1
+x
2
+x
3
+....+x
n
)−n
x
ˉ
from equation (1),
= n\bar{x}-n\bar{x}=0=RHSn
x
ˉ
−n
x
ˉ
=0=RHS
Similar questions