Math, asked by geekmanavi563, 1 year ago

If x bar is the mean of distribution then sigma fi(xi-xbar)is equal to what

Answers

Answered by ashishks1912
8

If x bar is the mean of distribution then \sum f_i(X_i-\overline{X}) is equal to 0                  

Therefore \sum f_i(X_i-\overline{X})=0  

Step-by-step explanation:

Let  be the mean of the given distribution

To find the value of  :

Let n be the total number of observations  

Let the mean of n observations be \overline{X}

Then \frac{x_1+x_2 +...+x_n}{n}=\overline{X}

=> x_1 +x_2 +x_3 +...+x_n=n\times \overline{X}

Now \sum (x_i-\overline{X})={(x_1 -\overline{X}) + (x_2 -\overline{X}) + (x_3 -\overline{X})+......+(x_n -\overrightline{X})}n\times X

=(x_1 +x_2 +x_3 +......+x_n )-n\times \overline{X}

=n\times \overline{X}-n\times \overline{X}

=0

Therefore \sum f_i(X_i-\overline{X})=0  

If x bar is the mean of distribution then  is equal to 0

                 

Answered by MATHsurvivor
0

Answer:

0(zero) is the answer .....

Similar questions