Math, asked by madhavaTripathi, 1 year ago

If x=c√b+4 find x +1/x

Answers

Answered by akashnilroy
71
1/x
= 1/(c√b + 4)
(c√b - 4)/(c√b - 4) x 1/(c√b + 4)
= (c√b - 4)/(c2b - 16)

So, x + 1/x
= (c√b + 4) + (c√b - 4)/(c2b - 16)
= (c3b√b + 17c√b - 68 + 14c2b)/(c2b - 16)
Answered by wagonbelleville
38

Answer:

x+\frac{1}{x}=\frac{c^2b+8c\sqrt{b}+17}{c\sqrt{b}+4}

Step-by-step explanation:

We are given that, x=c\sqrt{b}+4

It is required to find the value of x+\frac{1}{x}

As we have, x=c\sqrt{b}+4

Then, \frac{1}{x}=\frac{1}{(c\sqrt{b}+4)}

Thus, we get,

x+\frac{1}{x}=(c\sqrt{b}+4)+\frac{1}{(c\sqrt{b}+4)}

i.e. x+\frac{1}{x}=\frac{c\sqrt{b}+4)^2+1}{c\sqrt{b}+4}

i.e. x+\frac{1}{x}=\frac{c^2b+16+8c\sqrt{b}+1}{c\sqrt{b}+4}

i.e. x+\frac{1}{x}=\frac{c^2b+8c\sqrt{b}+17}{c\sqrt{b}+4}

Hence, the value of x+\frac{1}{x}=\frac{c^2b+8c\sqrt{b}+17}{c\sqrt{b}+4}.

Similar questions