Math, asked by Himanshusekhar, 1 year ago

if x= c√b + 4, Find x + 1/ x.

Answers

Answered by sujeetgupta1
5
x = c√b + 4 

1/x = 1/(c√b + 4) 



= x + (1/x) 

by putting the value of both,we get

(c√b + 4) + [1/(c√b + 4)] 

= [(c√b + 4)² + 1]/(c√b + 4) 

= [bc² + 8c√b + 16 + 1]/(c√b + 4) 

= [bc² + 8c√b + 17]/(c√b + 4) →after rationalising we get

= [(bc² + 8c√b + 17).(c√b - 4)] / [(c√b + 4).(c√b - 4)] 

= [bc³√b - 4bc² + 8bc² - 32c√b + 17c√b - 68] / (bc² - 16) 

= [bc³√b + 4bc² - 15c√b - 68] / (bc² - 16).

Himanshusekhar: I've got this answer But the problem is in Pearson book this is not the answer
sujeetgupta1: sorry bro.
Himanshusekhar: I think the book answer is worng
Himanshusekhar: If I'm not wrong
Similar questions