Math, asked by sairakamboj1067, 8 months ago

if x=cis alpha, y=cis beta, then prove that(x+y)(xy-1) /(x-y) (xy+1)=sin alpha+sin beta/sinalpha-sin beta

Answers

Answered by MaheswariS
5

\textbf{Given:}

\mathsf{x=cos\alpha+i\,sin\alpha}

\mathsf{y=cos\beta+i\,sin\beta}

\textbf{To prove:}

\mathsf{\dfrac{(x+y)(xy-1)}{(x-y)(xy+1)}=\dfrac{sin\alpha+sin\beta}{sin\alpha-sin\beta}}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{x=cos\alpha+i\,sin\alpha}

\mathsf{y=cos\beta+i\,sin\beta}

\mathsf{Then,}

\mathsf{\bar{x}=cos\alpha-i\,sin\alpha}

\mathsf{\bar{y}=cos\beta-i\,sin\beta}

\implies\mathsf{\dfrac{x-\bar{x}}{2i}=sin\alpha\;\;\&\;\;\dfrac{y-\bar{y}}{2i}=sin\beta}

\mathsf{Now}

\mathsf{\dfrac{sin\alpha+sin\beta}{sin\alpha-sin\beta}}

\mathsf{=\dfrac{\left(\dfrac{x-\bar{x}}{2i}\right)+\left(\dfrac{y-\bar{y}}{2i}\right)}{\left(\dfrac{x-\bar{x}}{2i}\right)-\left(\dfrac{y-\bar{y}}{2i}\right)}}

\mathsf{=\dfrac{\dfrac{(x-\bar{x})+(y-\bar{y})}{2i}}{\dfrac{(x-\bar{x})-(y-\bar{y})}{2i}}}

\mathsf{=\dfrac{(x-\bar{x})+(y-\bar{y})}{(x-\bar{x})-(y-\bar{y})}}

\mathsf{=\dfrac{(x+y)-(\bar{x}+\bar{y})}{(x-y)-(\bar{x}-\bar{y})}}

\textsf{We know that,}

\boxed{\mathsf{If\;|z|=1,\;then\;\bar{z}=\dfrac{1}{z}}}

\mathsf{=\dfrac{(x+y)-(\dfrac{1}{x}+\dfrac{1}{y})}{(x-y)-(\dfrac{1}{x}-\dfrac{1}{y})}}

\mathsf{=\dfrac{(x+y)-(\dfrac{x+y}{xy})}{(x-y)-(\dfrac{y-x}{xy})}}

\mathsf{=\dfrac{(x+y)-(\dfrac{x+y}{xy})}{(x-y)+(\dfrac{x-y}{xy})}}

\mathsf{=\dfrac{(x+y)(1-\dfrac{1}{xy})}{(x-y)(1+\dfrac{1}{xy})}}

\mathsf{=\dfrac{(x+y)(\dfrac{xy-1}{xy})}{(x-y)(\dfrac{xy+1}{xy})}}

\mathsf{=\dfrac{(x+y)(xy-1)}{(x-y)(xy+1)}}

\implies\boxed{\mathsf{\dfrac{(x+y)(xy-1)}{(x-y)(xy+1)}=\dfrac{sin\alpha+sin\beta}{sin\alpha-sin\beta}}}

\textbf{Find more:}}

Find z if arg(z+2i)=π/4 and arg(z-2i)=3π/4 solutions

https://brainly.in/question/9368835

Similar questions