if x cos aa+y sin a=x cos b+y sin b =k show that x/cos 1/2(a+b)=y/sin 1/2(a-b)
Answers
Answer:
☆☺️✨✨♡ANSWER ☺️✨✨✨☆
Step-by-step explanation:
Correct option is
Correct option isA
Correct option isAcosα+cosβ=x2+y24ax
Correct option isAcosα+cosβ=x2+y24axB
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2C
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ay
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes xcosθ+ysinθ=2a.
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes xcosθ+ysinθ=2a.Or
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes xcosθ+ysinθ=2a.Or (ysinθ−2a)2=(−xcosθ)2
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes xcosθ+ysinθ=2a.Or (ysinθ−2a)2=(−xcosθ)2Or
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes xcosθ+ysinθ=2a.Or (ysinθ−2a)2=(−xcosθ)2Or y2sin2θ−4aysinθ+4a2=x2cos2θ
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes xcosθ+ysinθ=2a.Or (ysinθ−2a)2=(−xcosθ)2Or y2sin2θ−4aysinθ+4a2=x2cos2θOr
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes xcosθ+ysinθ=2a.Or (ysinθ−2a)2=(−xcosθ)2Or y2sin2θ−4aysinθ+4a2=x2cos2θOr y2sin2θ−4aysinθ+4a2=x2(1−sin2θ)
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes xcosθ+ysinθ=2a.Or (ysinθ−2a)2=(−xcosθ)2Or y2sin2θ−4aysinθ+4a2=x2cos2θOr y2sin2θ−4aysinθ+4a2=x2(1−sin2θ)Or
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes xcosθ+ysinθ=2a.Or (ysinθ−2a)2=(−xcosθ)2Or y2sin2θ−4aysinθ+4a2=x2cos2θOr y2sin2θ−4aysinθ+4a2=x2(1−sin2θ)Or (x2+y2)sin2θ−4aysinθ+4a2+x2=0.
Correct option isAcosα+cosβ=x2+y24axBcosαcosβ=x2+y24a2−y2Csinα+sinβ=x2+y24ayThe general equation becomes xcosθ+ysinθ=2a.Or (ysinθ−2a)2=(−xcosθ)2Or y2sin2θ−4aysinθ+4a2=x2cos2θOr y2sin2θ−4aysinθ+4a2=x2(1−sin2θ)Or (x2+y2)sin2θ−4aysinθ+4a2+x2=0.Let the roots be