If x cosθ + y sinθ = z, then prove that x sinθ – y
cosθ = √(x²+ y² - z²)
Answers
Answered by
1
Answer:
We have
x = r sin θ cos ɸ
y = r sin θ sin ɸ
z = r cos θ
squaring and adding,
x2 + y2 + z2
= r2 sin2 θ cos2 ɸ + r2 sin2 θ sin2 ɸ + r2 cos2 θ
= r2 sin2 θ (cos2 ɸ + sin2 ɸ) + r2 cos2 θ
= r2 sin2 θ × 1 + r2 cos2 θ
= r2 (sin2 θ + cos2 θ)
= r2 × 1 = r2
Hence x2 + y2 + z2 = r2
Hence proved
Similar questions
History,
4 months ago
Social Sciences,
4 months ago
Biology,
9 months ago
Computer Science,
1 year ago
Hindi,
1 year ago