Math, asked by Anishdaw, 9 months ago

If x= cosecA - sinA and y= secA - cosA, then show that x^2/3 + y^2/3 = ( xy)^-2/3

Answers

Answered by MaheswariS
13

\textbf{Given:}

x=cosecA-sinA\;\;\text{and}\;\;y=secA-cosA

\textbf{To prove:}

x^{\frac{2}{3}}+y^{\frac{2}{3}}=(xy)^{\frac{-2}{{3}}

x=cosecA-sinA

x=\dfrac{1}{sinA}-sinA

x=\dfrac{1-sin^2A}{sinA}

x=\dfrac{cos^2A}{sinA}

y=secA-cosA

y=\dfrac{1}{cosA}-cosA

y=\dfrac{1-cos^2A}{cosA}

y=\dfrac{sin^2A}{cosA}

\text{Now,}

\bf\,x^{\frac{2}{3}}+y^{\frac{2}{3}}

=(\dfrac{cos^2A}{sinA})^{\frac{2}{3}}+(\dfrac{sin^2A}{cosA})^{\frac{2}{3}}

=\dfrac{cos^\frac{4}{3}A}{sin^{\frac{2}{3}}A}+\dfrac{sin^\frac{4}{3}A}{cos^{\frac{2}{3}}A}

=\dfrac{cos^\frac{6}{3}A+sin^\frac{6}{3}A}{sin^{\frac{2}{3}}A\;cos^{\frac{2}{3}}A}

=\dfrac{cos^2A+sin^2A}{sin^{\frac{2}{3}}A\;cos^{\frac{2}{3}}A}

=\dfrac{1}{sinA\;cosA)^{\frac{2}{3}}}........(1)

\bf\,xy

=(\dfrac{cos^2A}{sinA})(\dfrac{sin^2A}{cosA})

=cosA\;sinA

\bf\,(xy)^{\frac{2}{3}}

=(cosA\;sinA)^{\frac{2}{3}}

\text{Now, (1) becomes}

x^{\frac{2}{3}}+y^{\frac{2}{3}}=\frac{1}{\,(xy)^{\frac{2}{3}}}

\implies\boxed{\bf\,x^{\frac{2}{3}}+y^{\frac{2}{3}}=(xy)^{\frac{-2}{3}}}

Find more:

X/acosθ+y/bsinθ=1 and x/asinθ-y/bcosθ=1, prove that x²/a²+y²/b²=2.

https://brainly.in/question/15922910

If cosec theta-sin theta =a^3 and sec theta -cos theta = b^3, prove that a^2b^2 (a² +b²)=1

https://brainly.in/question/15070557

Similar questions