Math, asked by kaurpushpinder5581, 1 year ago

If x equal to 2 - root 3, find the value of ( x - 1 by x) whole cube

Answers

Answered by Anonymous
7
\underline{\mathfrak{\huge{Question:}}}

Given is that : x = \tt{2 - \sqrt{3}}

Now, find the value of : \tt{{x - \frac{1}{x}}^{3}}\\

\underline{\mathfrak{\huge{Answer:}}}

Start with simplifying the "\tt{x - \frac{1}{x}}\\" term :-

x - \frac{1}{x}\\ = 2 - \sqrt{3} - \frac{1}{2- \sqrt{3}}

Start rationalizing it now :-

=》 2 - \sqrt{3} - (\frac{1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}})\\

Some more steps to go :-

=》 2 - \sqrt{3} - (\frac{2 + \sqrt{3}}{2^{2} - \sqrt{3}^{2}}\\

Few more steps :-

=》 2 - \sqrt{3} - (\frac{2 + \sqrt{3}}{4-3}\\

Almost done with the result :-

=》 2 - \sqrt{3} - (2 + \sqrt{3})

Open the brackets now :-

=》 2 - \sqrt{3} - 2 - \sqrt{3}

Do the necessary operations and Get your final result :-

=》 (-2\sqrt{3})

Now, we can easily put the value of x - \frac{1}{x}\\ in the equation :-

{x-\frac{1}{x}}^{3}\\

Putting it there, we get :-

=》 (-2\sqrt{3})^{3}

The final answer therefore, will be :-

=》 \tt{(-24\sqrt{3})}

There's your answer !
Similar questions