Math, asked by SaanviSatwika9c, 8 months ago

if x equal to 3 plus 2 under root 2 then find x raised to the power 2 plus 1 by x raised to the power 2​

Answers

Answered by ItzDvilJatin2
25

Answer:

Given

x = 3+2\sqrt{2}

To find

x² + \dfrac{1}{x²}

By using identity

\small\boxed{(a + b)² = a²+ b²+ 2ab}

☞ put the value of x

⟹ x² + \dfrac{1}{x²} + 2 (x) * \dfrac{1}{x}

⟹. (3 + 2√2)² + \dfrac{1}{(3+2√2)²} + 2

⟹ 9 + 8 + \dfrac{1}{9 + 8} + 2

⟹ 17 +\dfrac{1}{17} + 2

⟹. \dfrac{290}{17} + 2

⟹. \dfrac{290 + 34}{17}

⟹. \dfrac{324}{17}

Hope it helps

Answered by Angelsonam
41

Answer:

\huge\boxed{\fcolorbox{orange}{blue}{Given:}}

x=3+2 \sqrt[]{2}

\huge\boxed{\fcolorbox{orange}{blue}{To find:}}

x+1/{×}^{2}

\huge\boxed{\fcolorbox{orange}{blue}{Solution:}}

First,find the value of x^2

{x}^{2}=({3+2 \sqrt[]{2}})^{2}\\</p><p>=&gt;{x}^{2}={3}^{2}+{2 \sqrt[]{2}}^{2}+2×3×2 \sqrt[]{2}\\</p><p>=&gt;{x}^{2}=9+8+12 \sqrt[]{2}\\</p><p>Hence,{x}^{2}=17+12 \sqrt[]{2}

Put the value of {x}^{2}

And,find\ the\ value\ of\ 1/{x}^{2}=</p><p>1/(17+12 \sqrt[]{2})\\</p><p>(1/(17+12 \sqrt[]{2}))×(17-22 \sqrt[]{2}/17-12 \sqrt[]{2})\\</p><p>through\ rationalising\ denominator\\</p><p>=&gt;(1×17-12 \sqrt[]{2})/({17-12 \sqrt[]{2}}^{2})\\</p><p>=&gt;17-12 \sqrt[]{2}/({17}^{2}-{12 \sqrt[]{2}}^{2}\\</p><p>=&gt;17-12 \sqrt[]{2}/(289-288)\\</p><p>=&gt;17-12 \sqrt[]{2}/1\\</p><p>hence\ the\ value\ of 1/{x}^{2}is 17-12 \sqrt[]{2}

Now, put the values and solve it,

x+1/{×}^{2}\\</p><p>=17+12 \sqrt[]{2}+17-12 \sqrt[]{2}\\</p><p>=17+17+12 \sqrt[]{2}-12 \sqrt[]{2}

=34 is answer...

\huge\boxed{\fcolorbox{orange}{blue}{Formula used:}}

{(a+b)}^{2}={a}^{2}+2ab+{b}^{2}\\</h3><h3>{a}^{2}-{b}^{2}=(a+b)(a-b)

Similar questions