if X equal to 7 + root 40 find the value of root x plus one upon root x
Attachments:
Answers
Answered by
65
HELLO DEAR,
given that:-
x = 7 + √40
⇒ x = 7 + √(2 × 2 × 2 × 5)
⇒ x = 7 + 2(√2× √5)
⇒ x = 5 + 2 + 2(√2 × √5)
⇒ x = (√5)² + (√2)² + 2(√2 × √5)
⇒ x = (√5 + √2)²
⇒ √x = (√5 + √2)------------( 1 )
now,
1/√x = 1/(√5 + √2) * (√5 - √2)/(√5 - √2)
⇒1/√x = (√5 - √2)/(5 - 2)
⇒1/√x = (√5 - √2)/3-----------( 2 )
adding --- ( 1 ) & ----( 2 )
(√x + 1/√x) = (√5 + √2) + (√5 - √2)/3
⇒(√x + 1/√x) = [ 3√5 + 3√2 + √5 - √2 ] /3
⇒(√x + 1/√x) = (4√5 + 2√2)/3
⇒(√x + 1/√x) = 2(2√5 + √2)/3
I HOPE ITS HELP YOU DEAR,
THANKS
given that:-
x = 7 + √40
⇒ x = 7 + √(2 × 2 × 2 × 5)
⇒ x = 7 + 2(√2× √5)
⇒ x = 5 + 2 + 2(√2 × √5)
⇒ x = (√5)² + (√2)² + 2(√2 × √5)
⇒ x = (√5 + √2)²
⇒ √x = (√5 + √2)------------( 1 )
now,
1/√x = 1/(√5 + √2) * (√5 - √2)/(√5 - √2)
⇒1/√x = (√5 - √2)/(5 - 2)
⇒1/√x = (√5 - √2)/3-----------( 2 )
adding --- ( 1 ) & ----( 2 )
(√x + 1/√x) = (√5 + √2) + (√5 - √2)/3
⇒(√x + 1/√x) = [ 3√5 + 3√2 + √5 - √2 ] /3
⇒(√x + 1/√x) = (4√5 + 2√2)/3
⇒(√x + 1/√x) = 2(2√5 + √2)/3
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
9
Answer:
x= 7+√40,then find value of √x +1/√x
Step-by-step explanation:
Attachments:
Similar questions