Math, asked by sreeramroshan, 1 year ago

if x equals to 2 plus root 3 find x cube plus 1 by x cube

Answers

Answered by pradipta3
0
x^3=8+3✓3+12√3+18=26+15√3

(27+15√3)/26+15√3

=[(27+15√3)×(26-15√3)]/1

=702+390√3-405√3-675

=27-15√3

multiply it get it...

brainiest plzzzzzzzzz

sreeramroshan: plz multiply
Answered by DaIncredible
4
Heya there !!!
Here is the answer you were looking for:
x = 2 +  \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

On rationalizing the denominator we get,

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3}) }^{2} }  \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{x}  = 2 -  \sqrt{3}  \\  \\ x +  \frac{1}{x}  = (2 +  \sqrt{3} ) + (2 -  \sqrt{3} ) \\  \\ x +  \frac{1}{x}  =  2 +  \sqrt{3}  + 2  -  \sqrt{3}  \\  \\ x +  \frac{1}{x}  = 4 \\

On cubing both the sides we get,

 {(x +  \frac{1}{x}) }^{3}  =  {(4)}^{3}  \\  \\  {(x)}^{3}  +  {( \frac{1}{x} )}^{3}  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 64 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(4) = 64 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 12 = 64 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 64 - 12 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 52


Hope this helps!!!

Feel free to ask in comment section if you have any doubt regarding to my answer...

@Mahak24

Thanks...
☺☺
Similar questions