Math, asked by itsansh0816, 2 months ago

If x>0 and x²+1/9x²=25/36, find :x³+1/27x³


Please tell the answer fast.
No spammers allowed.​

Attachments:

Answers

Answered by 12thpáìn
236

Given

  • { {x}^{2}  +  \cfrac{1}{9 {x}^{2} } =  \cfrac{25}{36}    \:  \:  \:  \:  \:  \:  \:  -  -  -  -  - (1)}

To Find

  • {x}^{2}  +  \cfrac{1}{27{x}^{3} }

Formula used

\boxed{\bf{a²+b²=(a+b)²-2ab}}

\boxed{\bf{a³+b³=(a+b)(a²+b²-ab)}}

Solution

\sf {x}^{2}  +  \cfrac{1}{9 {x}^{2} } =  \cfrac{25}{36}

\sf {x}^{2}  +  \cfrac{1}{ {3x}^{2} } =  \cfrac{25}{36}

\boxed{\bf{a²+b²=(a+b)²-2ab}}

 \sf \left(x +  \dfrac{1}{3c} \right)^{2}   - 2 \times x \times  \dfrac{1}{3x} =  \cfrac{25}{36}

\sf  \left(x +  \dfrac{1}{3x} \right)^{2}   -   \dfrac{2}{3} =  \cfrac{25}{36}

 \sf \left(x +  \dfrac{1}{3x} \right)^{2}  =  \cfrac{25}{36} +  \cfrac{2}{3}

\sf \left(x +  \dfrac{1}{3x} \right)^{2}  =  \cfrac{25 + 24}{36}

\sf \left(x +  \dfrac{1}{3x} \right)^{2}  =  \cfrac{49}{36}

\sf \left(x +  \dfrac{1}{3x} \right)  =   \sqrt{ \cfrac{ {7}^{2} }{ {6}^{2} }}

\sf  \left(x +  \dfrac{1}{3x} \right)  =    \cfrac{7}{6}  \:  \:  \:  \:  \:  \:  \:  -  -  -  - (2)\\

Now

\\\sf {x}^{2}  +  \cfrac{1}{27{x}^{3} }

\sf {x}^{2}  +  \cfrac{1}{{(3x)}^{3} }

\boxed{\bf{a³+b³=(a+b)(a²+b²-ab)}}

\sf {{x}^{2}  +  \cfrac{1}{(3{x})^{3} }  = (x +  \cfrac{1}{3x} )( {x}^{2}  +  \cfrac{1}{ {3x}^{2}  }  - 2 \times x \times  \cfrac{1}{3x})}

\sf {{x}^{2}  +  \cfrac{1}{(3{x})^{3} }  = ( \cfrac{7}{6} )(  \cfrac{25}{36}       -  \cfrac{1}{3})}

{\sf {x}^{2}  +  \cfrac{1}{(3{x})^{3} }  = ( \cfrac{7}{6} )(  \cfrac{25 - 24}{36}       )}

{\sf {x}^{2}  +  \cfrac{1}{(3{x})^{3} }  = \cfrac{7}{6}  \times  \cfrac{1} {36}       }

\bf {{x}^{2}  +  \cfrac{1}{27{x}^{3} }  = \  \cfrac{7} {216}       }\\

Answered by rosoni28
18

{ {x}^{2} + \cfrac{1}{9 {x}^{2} } = \cfrac{25}{36} \: \: \: \: \: \: \: - - - - - (1)}

{x}^{2} + \cfrac{1}{27{x}^{3} }

\huge\boxed{\bf{a²+b²=(a+b)²-2ab}}

\huge\boxed{\bf{a³+b³=(a+b)(a²+b²-ab)}}

\huge\sf {x}^{2} + \cfrac{1}{9 {x}^{2} } = \cfrac{25}{36}x

\huge\sf {x}^{2} + \cfrac{1}{ {3x}^{2} } = \cfrac{25}{36}

\huge\boxed{\bf{a²+b²=(a+b)²-2ab}}

\sf \huge\left(x + \dfrac{1}{3c} \right)^{2} - 2 \times x \times \dfrac{1}{3x} = \cfrac{25}{36}(x+

\sf \left(x + \dfrac{1}{3x} \right)^{2} - \dfrac{2}{3} = \cfrac{25}{36}

\sf \left(x + \dfrac{1}{3x} \right)^{2} = \cfrac{25}{36} + \cfrac{2}{3}

\sf \left(x + \dfrac{1}{3x} \right)^{2} = \cfrac{25 + 24}{36}

\sf \left(x + \dfrac{1}{3x} \right)^{2} = \cfrac{49}{36}

\sf \left(x + \dfrac{1}{3x} \right) = \sqrt{ \cfrac{ {7}^{2} }{ {6}^{2} }}

\begin{gathered}\sf \left(x + \dfrac{1}{3x} \right) = \cfrac{7}{6} \: \: \: \: \: \: \: - - - - (2)\\\end{gathered}

\begin{gathered}\\\sf {x}^{2} + \cfrac{1}{27{x}^{3} } \end{gathered}

\sf {x}^{2} + \cfrac{1}{{(3x)}^{3} }

\huge\boxed{\bf{a³+b³=(a+b)(a²+b²-ab)}}

\sf {{x}^{2} + \cfrac{1}{(3{x})^{3} } = (x + \cfrac{1}{3x} )( {x}^{2} + \cfrac{1}{ {3x}^{2} } - 2 \times x \times \cfrac{1}{3x})}

\sf {{x}^{2} + \cfrac{1}{(3{x})^{3} } = ( \cfrac{7}{6} )( \cfrac{25}{36} - \cfrac{1}{3})}

{\sf {x}^{2} + \cfrac{1}{(3{x})^{3} } = ( \cfrac{7}{6} )( \cfrac{25 - 24}{36} )}

{\sf {x}^{2} + \cfrac{1}{(3{x})^{3} } = \cfrac{7}{6} \times \cfrac{1} {36} }

\huge \begin{gathered}\bf {{x}^{2} + \cfrac{1}{27{x}^{3} } = \ \cfrac{7} {216} }\\\end{gathered}

Similar questions