Math, asked by kotwali, 7 months ago

if x is = 3 + 2 under root 2 then find the value of (x-1/x)power 3​

Answers

Answered by BrainlyIAS
8

Question :

★ If x = 3+2√2 then find the value of

  • (x - ¹/ₓ)³

Solution :

\sf \pink{x=3+2\sqrt{2}}

\to \sf \dfrac{1}{x}=\dfrac{1}{3+2\sqrt{2}}

Let's rationalize the denominator ,

\to \sf \dfrac{1}{x}=\dfrac{1}{3+2\sqrt{2}}\times \dfrac{3-2\sqrt{2}}{3-2\sqrt{2}}

  • ( a + b ) ( a - b ) = a² - b²

\to \sf \dfrac{1}{x}=\dfrac{3-2\sqrt{2}}{(3)^2-(2\sqrt{2})^2}\\\\\to \sf \dfrac{1}{x}=\dfrac{3-2\sqrt{2}}{9-8}\qquad \; \\\\\to \sf \green{\dfrac{1}{x}=3-2\sqrt{2}}\ \qquad

Let's solve for our required ,

\to \sf \bigg(x-\dfrac{1}{x}\bigg)^3

\to \sf ((3+2\sqrt{2})-(3-2\sqrt{2}))^3\\\\\to \sf (3+2\sqrt{2}-3+2\sqrt{2})^3\ \; \; \; \; \;

\to \sf (4\sqrt{2})^3

\leadsto \sf 128\sqrt{2}\ \; \orange{\bigstar}

Answered by ModsChecker
8

\sf{ x = 3 + 2\sqrt{2} \quad \dots(1)}

\implies \sf{\dfrac{1}{x} = \dfrac{1}{3 + 2\sqrt{2}}}

On rationalising,

\implies \sf{\dfrac{1}{x} = \dfrac{1}{3 + 2\sqrt{2}} \times  \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}}}

 \green{\huge{\star}} \boxed{\sf{(a - b)(a + b) = a^2 - b^2}}

\implies \sf{\dfrac{1}{x} = \dfrac{3 - 2\sqrt{2}}{3^2 - (2\sqrt{2})^2}}

\implies \sf{\dfrac{1}{x} = \dfrac{3 - 2\sqrt{2}}{9 - 8}}

\implies \sf{\dfrac{1}{x} = 3 - 2\sqrt{2}\quad\dots(2)}

\underline{\mathfrak{\red{ (1) - (2) }:-}}

\sf{x - \dfrac{1}{x} = 3 + 2\sqrt{2} - (3 - 2\sqrt{2})}

\implies \sf{x - \dfrac{1}{x} =  4\sqrt{2}}

Cubing both sides,

\sf{ (x - \dfrac{1}{x})^3 = (4\sqrt{2})^3}

\implies \sf{ (x - \dfrac{1}{x})^3 = 4^3 \times (\sqrt{2})^3}

\leadsto \underline{\boxed{\mathfrak{ \pink{(x - \dfrac{1}{x})^3 = 128\sqrt{2}}}}}

Similar questions