Math, asked by reyzor255, 6 months ago

If x is a positive integer such that the distance between points P(x, 2) and Q(3-6) is 10 units, then x =​

Answers

Answered by aryan073
5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) If x is a positive integer such that the distance between points p(x,2) and Q(3,-6) is 10 units then x=

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:  \:  \large \orange{ \bold{ \underline{ \underline{step \: by \: step \: explaination}}}}

 \:  \quad\implies \red { \underline{ \displaystyle \bf{  by \: distance \: formula}}}

 \:   \\ \quad \implies \displaystyle \sf{ pq = \sqrt{ {(x2 - x1)}^{2}  +  {(y2 - y1)}^{2} } }

 \:  \:   \\ \quad \implies \displaystyle \sf{10units =  \sqrt{ {(3 - x)}^{2} +  {(6 - 2)}^{2}  }}

 \:  \quad \implies \displaystyle \sf{10 =   \sqrt{ {(3 - x)}^{2}  + 16}}

 \:  \quad  \implies \displaystyle \sf{100 =  {(x - 3)}^{2}  + 16}

 \:  \:  \quad \implies \displaystyle \sf{100 - 16 =  {(x - 3)}^{2} }

 \:  \:  \quad \implies \displaystyle \sf{84 =  {x}^{2}  + 9 - 6x}

 \:  \:  \quad \implies \displaystyle \sf{ {x}^{2}   - 6x + 9 = 84}

 \:  \:  \quad \implies \displaystyle \sf{ {x}^{2}   - 6x  = 84 - 9}

 \:  \:  \quad  \implies \displaystyle \sf{ {x}^{2}  - 6x = 75}

 \:  \\  \quad \implies \displaystyle \bf{quadratic \ \: equation :  {x}^{2} - 6x - 75 = 0}

 \:  \:  \\  \quad \implies \displaystyle  \red{\bf{ \underline{ \: by \: determinant \: form}}}

 \:  \:  \quad \implies \displaystyle \sf{ {b}^{2}  - 4ac}

 \:   \:  \quad\implies \displaystyle \sf{ {( - 6)}^{2}  - 4(1)( - 75)}

 \:  \quad \implies \displaystyle \sf{36  + 300}

 \:  \quad\implies \displaystyle \sf{336}

 \:  \:  \quad \implies \red{ \bf{ \underline{by \: formula \: method}}}

 \:   \quad  \implies \displaystyle \sf{x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }

 \:  \quad\implies \displaystyle \sf{x =  \frac{6 \pm \sqrt{336} }{2} }

 \:   \quad  \implies \displaystyle \sf{x = \frac{6 \pm \sqrt{36 + 300} }{2} }

 \:  \:  \quad \implies \displaystyle \sf{x =  \frac{6 \pm6 \sqrt{300} }{2} }

 \:  \quad\implies \displaystyle \sf{x = \frac{2(3 \pm3 \sqrt{300}) }{2} }

  \:  \:  \quad \implies \displaystyle \sf{x = 3 \pm3  \sqrt{300} }

 \: \red  \bigstar \boxed{ \boxed{ \underline{ \underline{ \tt{ \: the \: roots \: are \: 3 + 3 \sqrt{300}  \: and \: 3 - 3 \sqrt{300} }}}}}

Similar questions