Math, asked by chowkarronanchowkar, 9 months ago

If x is a positive real number such that x square+ 1 upon x is equal to 62 then evaluate x + 1 upon x​

Answers

Answered by abhi569
3

Answer:

8

Step-by-step explanation:

 Here,

⇒ x^2 + 1 / x^2 = 62

  Adding 2 on both sides:

⇒ x^2 + 1 / x^2 + 2 = 62 + 2

⇒ x^2 + 1 / x^2 + 2( 1 ) = 64

⇒ x^2 + 1 / x^2 + 2( x * 1 / x ) = 64  

    using a² + b² + 2ab = ( a + b )²

⇒ ( x + 1 / x )^2 = 64

⇒ x + 1 / x = √64

⇒ x + 1 / x = 8

     

Answered by BrainlyMT
23

\purple{\sf{Answer:-}}

Given:-

 {\sf{ {x}^{2}  +  \frac{1}{{x}^{2}}  = 62}} \\

To find:-

{\sf{  x +  \frac{1}{x}}} \\

Solution:-

⇢{\sf{ {x}^{2}  +  \frac{1}{{x}^{2}}  = 62}} \\⇢ {\sf{  {(x +  \frac{1}{x}) }^{2}  - 2 \times x \times  \frac{1}{x}  = 62}} \\  ⇢{\sf{ {(x +  \frac{1}{x}) }^{2}  - 2 = 62}} \\ ⇢ {\sf{ {(x +  \frac{1}{x}) }^{2}   = 62 + 2}} \\⇢ {\sf{   {(x +  \frac{1}{x}) }^{2}   = 64}} \\⇢  {\sf{ x +  \frac{1}{x}  =  \sqrt{64}  = 8}} \\ ∴  {\sf{ x +  \frac{1}{x}    = 8}}

Final answer:-

\red{\sf{ x +  \frac{1}{x}}   = 8}

Similar questions