Math, asked by karan543, 1 year ago

if x is equal to 2 + root 3 find the value of a square + 1 x square


DaIncredible: a^2 or x^2 ?

Answers

Answered by IshanS
6
Hi there!

Given :-
x = 2 + √3

So, x² = (2 + √3)² = 4 + 3 + 4√3 = 7 + 4√3

Now,

1 / x = 1 / 2 + √3

= 1 / 2 + √3 × 2 - √3 / 2 - √3

= 2 - √3 / 4 - 3

= 2 - √3

Thus,

(1 / x)² = (2 - √3)²

= 4 + 3 - 4√3

= 7 - 4√3

Therefore,

x² + (1 / x)² = 7 + 4√3 + 7 - 4√3

= 7 + 7

= 14

Hence, The required answer is :-
Value of x² + (1 / x)² = 14

hope it helps! :)

DaIncredible: great sir ^-^
IshanS: Sir?
IshanS: I ain't Sir.. ye can call me Brother
DaIncredible: hehe you are my brother for sure... but i would like calling sir more ^^"
Answered by DaIncredible
3
Heya bro,
I guess you have written a^2 instead of x^2

If that so, So here is the solution :

x = 2 +  \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\

On rationalizing the denominator we get,

 \frac{1}{x}   =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3} })^{2} }  \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{x}  = 2 -  \sqrt{3}  \\  \\ x +  \frac{1}{x} = (2 +   \sqrt{3} ) + ( 2 -  \sqrt{3} ) \\  \\ x +  \frac{1}{x}  = 4


Squaring both the sides we get,

 {(x +  \frac{1}{x} )}^{2}  =  {(4)}^{2}  \\  \\  {(x)}^{2}  +  {( \frac{1}{x} )}^{2}  + 2 \times x \times  \frac{1}{x}  = 16 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 16 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }   = 16 - 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14

Hope this helps!!!

Feel free to ask in the comment section if you have any doubt regarding to my answer...

@Mahak24

Thanks...
☺☺
Similar questions