Math, asked by answerpicker, 1 year ago

if x is equal to 2 + root 3 find the value of x cube + 1 by x cube

Answers

Answered by TiwariVaishnavi
4

Here's your answer mate..

I am not able to send the image so I will answer here only::

x= 2+√3

(2+√3)^3

so cube(2+√3) of x= 26+7√3+8√3= 26+15√3

then , we have to find the value of 1/x^3...

x^3= 26+7√3+8√3...= 26+15√3

= 1/x^3

= 1/26+15 × 26-15√3/26-15√3

we will get 26-15√3/1 that is equals to 26 -15√3

Hence ...according yo question...

x^3 + 1/x^3

= 26+15√3+26-15√3

= 52.....is the answer


Hope it Helps!!


Answered by BrainlyQueen01
16
Hi there !

_______________________

Given :

x = 2 + \sqrt{3}

To find ;

x {}^{3} + \frac{1}{x {}^{3} }

Solution :

x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{(2) {}^{2} - (\sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 - \sqrt{3}

Now,

x + \frac{1}{x} \\ \\ \implies2 + \cancel{\sqrt{3}}+ 2 - \cancel {\sqrt{3}} \\ \\ \implies2 + 2 \\ \\ \implies4

So, on cubing both sides, we have

(x + \frac{1}{x} ) {}^{3} = (4){}^{3} \\ \\ x{}^{3} + \frac{1}{x{}^{3}} + 3(x + \frac{1}{x} ) = 64 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} +3 \times 4 = 64 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} +12 = 64 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} = 64 - 12 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} = 64 - 12 \\ \\ \boxed{ \bold{ x{}^{3} + \frac{1}{x{}^{3}} = 52}}

_______________________

Thanks for the question !

☺️❤️☺️
Similar questions