Math, asked by deep442092, 21 days ago

if x is equal to 2 + root 5 prove that X square + 1 by x square is equal to 18​

Answers

Answered by LivetoLearn143
1

\large\underline{\sf{Solution-}}

Given that .

\rm :\longmapsto\:x =  \sqrt{5} + 2

So,

\rm :\longmapsto\:\dfrac{1}{x}

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{5}  + 2}  \times \dfrac{ \sqrt{5}  - 2}{ \sqrt{5}  - 2}

{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2} \bigg \}}

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  - 2}{ {( \sqrt{5})}^{2}  -  {(2)}^{2} }

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  - 2}{5 - 4}

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  - 2}{1}

\rm \:  =  \:  \:  \sqrt{5} - 2

\bf\implies \:\dfrac{1}{x}   = \:\sqrt{5} - 2

Now,

\rm :\longmapsto\: {x}^{2}  + \dfrac{1}{ {x}^{2} }

\rm \:  =  \:  \:  {( \sqrt{5} + 2) }^{2}  +  {( \sqrt{5}  - 2)}^{2}

{\bigg \{ \because \:  {(x + y)}^{2}  +  {(x - y)}^{2} = 2( {x}^{2}  +  {y}^{2}) \bigg \}}

\rm \:  =  \:  \: 2(5 + 4)

\rm \:  =  \:  \: 2 \times 9

\rm \:  =  \:  \: 18

\bf\implies \:\: {x}^{2}  + \dfrac{1}{ {x}^{2} }  = 18

Proved

Similar questions