Math, asked by kaku48, 1 year ago

if x is equal to 5 minus under root 21 upon to prove that that bracket x cube + 1 upon x cube bracket closed - 5 bracket open X square + 1 upon x square bracket close plus x=0

Answers

Answered by DJstorm
8

Answer:


Step-by-step explanation:


Attachments:
Answered by jaanvikumari17
1

Answer:

We have i )x = \frac{5-\sqrt{21}}{2}--(1)i)x=

2

5−

21

−−(1)

Now,

\begin{gathered}ii)\frac{1}{x}\\=\frac{1}{\frac{5-\sqrt{21}}{2}}\\=\frac{2}{5-\sqrt{21}}\end{gathered}

ii)

x

1

=

2

5−

21

1

=

5−

21

2

Rationalising the denominator, we get

=\frac{2(5+\sqrt{21})}{[(5-2\sqrt{21})(5+2\sqrt{21})]}

[(5−2

21

)(5+2

21

)]

2(5+

21

)

= \frac{2(5+\sqrt{21})}{[(5^{2}-(2\sqrt{21})^{2}]}

[(5

2

−(2

21

)

2

]

2(5+

21

)

=\frac{2(5+\sqrt{21})}{(25-21)}

(25−21)

2(5+

21

)

=\frac{2(5+\sqrt{21})}{4}

4

2(5+

21

)

=\frac{(5+\sqrt{21})}{2}--(2)

2

(5+

21

)

−−(2)

\begin{gathered} iii ) x + \frac{1}{x}\\=\frac{5-\sqrt{21}}{2}+\frac{(5+\sqrt{21})}{2}\end{gathered}

iii)x+

x

1

=

2

5−

21

+

2

(5+

21

)

= \frac{5-\sqrt{21}+5+\sqrt{21}}{2}

2

5−

21

+5+

21

=\frac{10}{2}

2

10

=55 ----(3)

Now ,

\begin{gathered}LHS= \big(x^{3}+\frac{1}{x^{3}}\big)-5\big(x^{2}+\frac{1}{x^{2}}\big)+\big(x+\frac{1}{x}\big)\\=[\big(x+\frac{1}{x}\big)^{3}-3(x+\frac{1}{x})]-5[\big(x+\frac{1}{x}\big)^{2}-2]+(x+\frac{1}{x})\\=[\big(x+\frac{1}{x}\big)^{3}-2(x+\frac{1}{x})-5[\big(x+\frac{1}{x}\big)^{2}-2]\\=5^{3}-2\times 5-5[5^{2}-2]\\=125-10-5(25-2)\\=115-5\times23\\=115-115\\=0\\=RHS\end{gathered}

LHS=(x

3

+

x

3

1

)−5(x

2

+

x

2

1

)+(x+

x

1

)

=[(x+

x

1

)

3

−3(x+

x

1

)]−5[(x+

x

1

)

2

−2]+(x+

x

1

)

=[(x+

x

1

)

3

−2(x+

x

1

)−5[(x+

x

1

)

2

−2]

=5

3

−2×5−5[5

2

−2]

=125−10−5(25−2)

=115−5×23

=115−115

=0

=RHS

Therefore,

\begin{gathered} \big(x^{3}+\frac{1}{x^{3}}\big)-5\big(x^{2}+\frac{1}{x^{2}}\big)+\big(x+\frac{1}{x}\big)\\=0\end{gathered}

(x

3

+

x

3

1

)−5(x

2

+

x

2

1

)+(x+

x

1

)

=0

Similar questions