Math, asked by adipanwar123, 1 year ago

if x is equal to 9 minus 4 root 5 then find x cube + 1 upon x cube

Answers

Answered by jiv99sri25
34
When x=9-4√5
Then we have to find 1/x which should be equals to 9+4√5

1/x = 9+4√5

Then (x + 1/x )whole cube = x cube + 1 / x cube + 3 ( x + 1/x)

(9-4√5+9+4√5) cube = x cube + 1/x cube + 3(9-4√5+9+4√5)

(18) cube = x cube + 1/ x cube + 3(18)

5832= x cube + 1/x cube+54

x cube + 1/x cube = 5832 - 54

So, x cube +1/x cube = 5778
Answered by BrainlyQueen01
88
Hey mate!

_______________________

Given :

x = 9 - 4 \sqrt{5}

To find :

x {}^{3}  +  \frac{1}{x {}^{3} }

Solution :

x = 9 - 4 \sqrt{5}  \\  \\  \frac{1}{x}  =  \frac{1}{9 - 4 \sqrt{5}}  \times  \frac{9  +  4 \sqrt{5}}{9  +  4 \sqrt{5}}  \\  \\ \frac{1}{x}  =  \frac{9 + 4 \sqrt{5} }{(9) {}^{2} - (4 \sqrt{5} ) {}^{2}  }  \\  \\  \frac{1}{x}  =  \frac{9 + 4 \sqrt{5} }{81 - 80}  \\  \\  \frac{1}{x}  = 9 + 4 \sqrt{5}

Now,

x +  \frac{1}{x}  = 9 -  \cancel{4 \sqrt{5} } + 9 +  \cancel{4 \sqrt{5}}  \\  \\ x +  \frac{1}{x}  = 9 + 9 \\  \\ x +  \frac{1}{x}  = 18
And, on cubing both sides.

(x +  \frac{1}{x} ) {}^{3}  = (18){}^{3}  \\  \\ x{}^{3}  +  \frac{1}{x{}^{3}  }  + 3(x +  \frac{1}{x} ) = 5826 \\  \\ x{}^{3}  +  \frac{1}{x{}^{3}  }  + 3 \times 18 = 5826 \\  \\ x{}^{3}  +  \frac{1}{x{}^{3}  } + 54 = 5826 \\  \\ x{}^{3}  +  \frac{1}{x{}^{3}  } = 5826 - 54 \\  \\ x{}^{3}  +  \frac{1}{x{}^{3}  } = 5778


_______________________

Thanks for the question !

☺️☺️☺️
Similar questions