Math, asked by chhayakshayap, 1 year ago

if x is equal to bracket 2 + root 3 bracket close find the value of bracket x square + 1 upon x square bracket close

Answers

Answered by abhi569
10

x = 2  +  \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

By Rationalization,


 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }   \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\   \\ =>  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ {2}^{2} -  {( \sqrt{3}) }^{2}  }  \\  \\  \\  = >  \frac{1}{x}  =  \frac{ 2 -  \sqrt{3} }{4 - 3}  \\  \\  \\  =>  \frac{1}{x}  = 2 -  \sqrt{3}   \\

Hence,


x +  \frac{1}{x}  = 2 +  \sqrt{3}  + 2 -  \sqrt{3}  \\  \\  \\  => x +  \frac{1}{x}  = 4



Square on both sides,


(x +  \frac{1}{x} ) ^{2}  =  {4}^{2}  \\  \\  \\  = >  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 16 \\  \\  \\  =>  {x}^{2}  +  \frac{1}{  {x}^{2} }  = 16 - 2 \\  \\  \\  = >   {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14
Answered by yuvraj9197
0

Answer:

$$\begin{lgathered}x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} }\end{lgathered}$$

By Rationalization,

$$\begin{lgathered}\frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ \\ => \frac{1}{x} = \frac{2 - \sqrt{3} }{ {2}^{2} - {( \sqrt{3}) }^{2} } \\ \\ \\ = > \frac{1}{x} = \frac{ 2 - \sqrt{3} }{4 - 3} \\ \\ \\ => \frac{1}{x} = 2 - \sqrt{3} \\\end{lgathered}$$

Hence,

$$\begin{lgathered}x + \frac{1}{x} = 2 + \sqrt{3} + 2 - \sqrt{3} \\ \\ \\ => x + \frac{1}{x} = 4\end{lgathered}$$

Square on both sides,

$$\begin{lgathered}(x + \frac{1}{x} ) ^{2} = {4}^{2} \\ \\ \\ = > {x}^{2} + \frac{1}{ {x}^{2} } + 2 = 16 \\ \\ \\ => {x}^{2} + \frac{1}{ {x}^{2} } = 16 - 2 \\ \\ \\ = > {x}^{2} + \frac{1}{ {x}^{2} } = 14\end{lgathered}$$

Similar questions