Math, asked by saanvee, 1 year ago

if x is equal to under root 3 minus under root 2 upon under root 3 + under root 2 and Y is equal to under root 3 + under root 2 upon under root 3 minus under root 2 then the value of x square + xy + Y square is

Answers

Answered by DaIncredible
14
Heya !!!

Identities used :

 {( x+ y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\  \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}

x =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \\

On rationalizing the denominator we get,

x =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \\  \\  x =  \frac{ {( \sqrt{3}) }^{2}  +  {( \sqrt{2}) }^{2} - 2( \sqrt{3} )( \sqrt{2} ) }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\ x =  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  \\  \\ x = 5 - 2 \sqrt{6}


Now,

y =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \\

On rationalizing the denominator we get,

y =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ y =  \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2}) }^{2} + 2( \sqrt{3} )( \sqrt{2}  ) }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\ y =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  \\  \\ y =   5 + 2 \sqrt{6}

Now putting the value in

 {x}^{2}  + xy +  {y}^{2}

 \\  =  {(5 - 2 \sqrt{6}) }^{2}  + (5 - 2 \sqrt{6} )(5 + 2 \sqrt{6} ) +  {(5 + 2 \sqrt{6} )}^{2}  \\  \\  = ( {(5)}^{2}  +  {(2 \sqrt{6} )}^{2}   -  2(5)(2 \sqrt{6} )) + ( {(5)}^{2}  -  {(2 \sqrt{6} )}^{2} ) + ( {(5)}^{2}  +  {(2 \sqrt{6}) }^{2}  + 2(5)(2 \sqrt{6} )) \\  \\  = (25 + 24  -  20 \sqrt{6} ) + (25 - 24) + (25 + 24 + 20 \sqrt{6} ) \\  \\  = 49 - 20 \sqrt{6}  + 1 + 49 + 20 \sqrt{6}  \\  \\  = 49 + 49 + 1 \\  \\  = 99

Hope this helps ☺
Similar questions