Math, asked by mohitverma59gmail, 1 year ago

if x is equal to x cube minus 2 X square + kx + 5 is divided by x minus 2 the remainder is 11 find the ke hence find all the zeros of x cube + 2 X square + 3 X + 1

Attachments:

Answers

Answered by Yubraj1
23
plz check this attachment
....
Attachments:

Yubraj1: plz mark as brainliest
Answered by mysticd
6

 Given \:p(x) = x^{3} -2x^{2}+kx+5

 If \: p(x) \: divided \:by \:(x-2) \: then \:the \\remainder \:is \: p(2)

 But , \: p(2) = 11 \: (given)

\implies 2^{3} -2\times 2^{2} + k \times 2 + 5 = 11

 \implies 8 - 8 + 2k = 11 - 5

 \implies  2k = 6

 \implies k = \frac{6}{2}

 \implies k = 3\:--(1)

 ii ) Given \: p(x) = x^{3} +kx^{2}+3x+1

 p(x) = x^{3} +3x^{2}+3x+1\: (From \:(1) ]

/* put x = -1 , we get */

 p(-1) = (-1)^{3} + 3(-1)^{2} + 3(-1) + 1 \\= -1 + 3 - 3 + 1 \\= 0

 \therefore (x+1) \:is \:a \:factor \:of \:p(x)

x+1) x³+3x²+3x+1 ( x²+2x +1

*****x³ + x²

_____________

*********2x² + 3x

********* 2x² + 2x

_______________

************** x + 1

************** x + 1

________________

Remainder (0)

________________

 Now, p(x) = (x+1)(x^{2} + 2x +1 )\\= (x+1)(x+1)^{2}\\= (x+1)(x+1)(x+1)

Therefore.,

 \red { Factors \: of \: p(x) } \green{= (x+1)(x+1)(x+1)}

•••♪

Similar questions