Math, asked by nalinkumarkalkal, 1 year ago

if x is equals to 1 minus under root 2 find the value of x minus one upon X whole cube

Answers

Answered by vaduz
192

Answer:  8


Step-by-step explanation:

given that

x= 1-√2

so

 \frac{1}{x}=\frac{1}{1-\sqrt{2}}\\\\=\frac{1}{1-\sqrt{2}}*\frac{1+\sqrt{2}}{1+\sqrt{2}}\\\\=\frac{1+\sqrt{2}}{1-2}\\\\-1-\sqrt{2}

so the value of

 (x-\frac{1}{x})^{3}\\\\=(1-\sqrt{2}+1+\sqrt{2})^{3}\\\\=(2)^{3}\\\\=8



Answered by lublana
58

Given:

x=1-\sqrt 2

To find:

Value of

(x-\frac{1}{x})^3

Solution:

\frac{1}{x}=\frac{1}{1-\sqrt{2}}

By rationalization

\frac{1}{x}=\frac{1+\sqrt{2}}{(1-\sqrt{2})(1+\sqrt{2})}

\frac{1}{x}=\frac{1+\sqrt{2}}{(1)^2-(\sqrt{2})^2}

Using identity:

(a+b)(a-b)=a^2-b^2

\frac{1}{x}=\frac{1+\sqrt{2}}{1-2}=-1-\sqrt{2}

Now, substitute the values

(x-\frac{1}{x})^3=(1-\sqrt{2}+1+\sqrt{2})^3

=(2)^3

=8

Hence, the value of

(x-\frac{1}{x})^3=8

Similar questions
Math, 7 months ago