If x is real, then greatest and least values of x2−x+1x2+x+1x2−x+1x2+x+1 are
Answers
Answered by
0
Answer:
y=x2+3x+9x2−2x+2
yx2+3xy+9y=x2−2x+2
x2(y−1)+x(3y+2)+9y−2=0
D>0
(3y+2)2−4(9y−2)(y−1)>0
9y2+4+12y−4(9y2−9y−2y+2)>0
36y2−44y+8−9y2−4−12y<0
27y2−56y+4<0
(y−2)(y−272)<0
272<y<2
Step-by-step explanation:
please make me brainliest
Answered by
0
Answer:
PLEASE MAKE ME BRAINLIST
Step-by-step explanation:
Correct option is
B
2 and
27
2
y=
x
2
+3x+9
x
2
−2x+2
yx
2
+3xy+9y=x
2
−2x+2
x
2
(y−1)+x(3y+2)+9y−2=0
D>0
(3y+2)
2
−4(9y−2)(y−1)>0
9y
2
+4+12y−4(9y
2
−9y−2y+2)>0
36y
2
−44y+8−9y
2
−4−12y<0
27y
2
−56y+4<0
(y−2)(y−
27
2
)<0
27
2
<y<2
Similar questions