Math, asked by xyz99, 1 year ago

if x+iy=3/(2+cos theta + i sin theta ) ; prove that x^2+y^2=4x-3

Answers

Answered by MaheswariS
49

\textbf{Given:}

x+iy=\frac{3}{2+cos\theta+i\;sin\theta}

\implies\;(x+iy)(2+cos\theta+i\;sin\theta)=3

\implies\;x(2+cos\theta)+i\;xsin\theta+i\;y(2+cos\theta)-ysin\theta=3

\implies\;(2x+xcos\theta-ysin\theta)+i(xsin\theta+2y+ycos\theta)=3+i\;0

\text{Separating corresponding real and imaginary parts on bothsides, we get}

2x+xcos\theta-ysin\theta=3

\text{and}

xsin\theta+2y+ycos\theta=0

\implies

xcos\theta-ysin\theta=3-2x...(1)

\text{and}

xsin\theta+ycos\theta=-2y...(2)

\text{Squaring and adding (1) and (2)}

(xcos\theta-ysin\theta)^2+(xsin\theta+ycos\theta)^2=(3-2x)^2+4y^2

x^2cos^2\theta+y^2sin^2\theta-2xy\;cos\theta\;sin\theta+x^2sin^2\theta+y^2cos^2\theta+2xy\;cos\theta\;sin\theta=9+4x^2-12x+4y^2

x^2(cos^2\theta+sin^2\theta)+y^2(cos^2\theta+sin^2\theta)=9+4x^2-12x+4y^2

\text{using,}\bf\;cos^2A+sin^2A=1

x^2+y^2=9+4x^2-12x+4y^2

\text{Rearranging terms, we get}

-3x^2-3y^2=9-12x

3x^2+3y^2=12x-9

\implies\boxed{\bf\;x^2+y^2=4x-3}

Answered by sandy1816
17

Answer:

your answer attached in the photo

Attachments:
Similar questions