Math, asked by pratham1355, 1 year ago

if(x-iy)(3+5i) is conjugate of -6-24i then find the values of real numbers x and y.

Answers

Answered by Anonymous286
53
Hope it helps..........
:)
Attachments:

pratham1355: using for elimination method ya substitution
Anonymous286: kya?
pratham1355: konsi method use kari h
Anonymous286: normally kar diya
Anonymous286: equate kiya real and imaginary parts
Answered by mysticd
13

 We \: know \:that , \\</p><p>[tex] \pink { If \: z = a + ib \:then \:it's \: conjugate }\\\pink {\overline z= a - ib }

 Now, Conjugate \: of \: -6 - 24i \\ is \: (-6+24i)\: ---(1)

 (x-iy)(3+5i) = -6 + 24i \: (given) \: --(2)

 \implies -6+24i \\= 3x + 5ix - 3iy + 5y\\= (3x + 5y)+ (-3y+5x)i

/* Compare real parts , we get */

 -6 = 3x + 5y \: --(3)

/* Compare imaginary parts , we get */

 24 = 5x - 3y \: ---(4)

/* Multiplying equation (3) by 3 and equation (4) by 5 , we get */

 -18 = 9x + 15y \: --(5)

 120 = 25x - 15y \: --(6)

/* Add Equations (5) and (6) ,we get */

 \implies 102 = 34x

 \implies x = \frac{102}{34}

 \implies x = 3

/* Put x =3 in equation (5) , we get */

 -18 = 9\times 3 + 15y

 \implies -18 - 27 = 15y

 \implies 15y = - 45

 \implies y = \frac{-45}{15}

 \implies y = -3

Therefore.,

 \green  { The \: value\: x =3 \:and \:y = -3 }

•••♪

Similar questions