Math, asked by pratikshaasaikia2003, 1 month ago

if (x + iy)( 4 - 5i) = ( 3 + i) then what will be tne values of x and y

Answers

Answered by xSoyaibImtiazAhmedx
0

Given ,

(x + iy)( 4 - 5i) = ( 3 + i)

 \implies \:  \bold{x + iy =  \frac{3 + i}{4 - 5i} }

 \implies \:  \bold{x + iy =  \frac{(3 + i)(4 + 5i)}{(4 - 5i)(4 + 5i)} }

 \implies \:  \bold{x + iy =  \frac{3 (4 + 5i) + i(4 + 5i)}{ {4}^{2} -  {(5i)}^{2}  } }

 \implies \:  \bold{x + iy =  \frac{12 + 15i + 4i + 5 {i}^{2} }{ 16- {25i}^{2}  } }

\implies \:  \bold{x + iy =  \frac{12 + 19i+ 5 ( - 1) }{ 16- {25}( - 1)  } }

\implies \:  \bold{x + iy =  \frac{12 + 19i - 5 }{ 16 + 25 } }

\implies \:  \bold{x + iy =  \frac{7+ 19i  }{ 41 } }

\implies \:  \bold{x + iy =   \frac{7}{41}  + i \frac{19}{41}  }

Comparing the real and imaginary part , we have

★ \:  \underbrace{ \color{orange}{ \bold{ \:  \: x =  \frac{7}{41}  \:  \:  \:  \: and \:  \:  \:  \: y =  \frac{19}{41} }}} \:  \: ★

Similar questions