if x+iy=√{(a+iy)/(c+id)},prove that (x²+y²)²=(a²+b²)/(c²+d²)
Answers
Answered by
9
Answer:
Step-by-step explanation:
x - iy = √{(a -ib)/(c-id)}
concept :-
|z|ⁿ = |zⁿ| and also |z1/z2| = |z1|/|z2|
solution:-
x -iy = √{(a-ib)/(c-id)}
x + (-y)i = √{(a+ (-b)i)/(c+(-d)i)}
now, take modulus both sides,
|x + (-y)i| = |(a+(-b)i)/(c+(-d)i)|½
√(x² + y²) = |(a+(-ib))|½/|(c+(-d)i)|½
take square both sides,
(x² + y²) = |a +(-b)i|/|c+(-d)i|
(x²+y²) = √(a²+b²)/√(c²+d²) [ by using formula |(±a)+i(±b)| = √(a²+b²) ]
Take square both sides,
Hence,
(x² + y²)² = (a²+b²)/(c²+d²)
Similar questions