Math, asked by jagame, 1 year ago

if x+iy=u+iv/u-iv,then prove x^2+y^2=1??anyone??

Answers

Answered by probrainsme101
0

Given:

The given relation is

x + iy = \frac{u + iv}{u - iv}

To Prove:

x^2+y^2 = 1

Proof:

Using the given relation, we have

x + iy = \frac{u + iv}{u - iv}

Taking modulus on both sides, we get

|x+iy| = |\frac{u+iv}{u-iv}|

\sqrt{x^2 + y^2}  = \frac{|u+iv|}{|u-iv|}                         [Using |x+iy| = \sqrt{x^2+y^2}]

\sqrt{x^2 + y^2}  = \frac{\sqrt{u^2+v^2} }{\sqrt{u^2+(-v)^2} }

\sqrt{x^2+y^2} = \frac{\sqrt{u^2+v^2}} {\sqrt{u^2+v^2}}

\sqrt{x^2+y^2}  = 1

Squaring both sides, we get

x^2+y^2 = 1

L.H.S. = R.H.S.

Hence proved.

#SPJ2

Similar questions
Math, 1 year ago