Math, asked by Anonymous, 11 months ago

If x+iy³ = u+iv , then show that u/x + v/y.= 4(x²-y²).

Pls Solve A challenge to the math aryabhatt

Answers

Answered by ThePeacefulMan
69

\huge{\boxed{\red{Question. :-}}}

⭐If x+iy³ = u+iv , then show

that u/x + v/y.= 4(x²-y²).

\huge{\boxed{Answer. :-}}

 \huge\frac{u}{x}  +  \frac{v}{y}  = 4x {}^{2}  - 4y {}^{2}

\huge{\boxed{Solution:-}}

Given:- x+iy³ = u+iv ,

To Prove:- u/x + v/y.= 4(x²-

y²).

Proof:-

(x+iy)³ = u+iv

=>x³+i³y³+3x²iy+3xi²y²=u+iv

=>x³-iy³+3x²iy-3xy²= u+iv

=> x²-3xy²=u

=>x(x²-3y²)=u

=>x²-3y²=u/x

3x²y - y³ = v

=>y(3x²-y²)=v

=> 3x²- y² = v/y

 \huge\frac{u}{x}  +  \frac{v}{y}  = 4x {}^{2}  - 4y {}^{2}

Hence proved. ✔✔

# 101% Spam free Answer . ✔✔

Answered by Anonymous
122

\huge{\text{\underline{Solution:-}}}

\implies(x + iy)³ = u + iv

\impliesx³ + 3x²iy + 3 xi²y² + i³y³ = u + iv

\impliesx³ + 3x²iy - 3xy² - iy³ = u + iv

\implies(x³ - 3xy²) + i (3x²y - y³) = u + iv

Therefore,

\impliesx³ - 3xy² = u and 3x²y - y³ = v

Therefore,

\impliesu / x + v / y

\impliesx³ - 3xy² / x + 3x²y - y³ / y

\impliesx² - 3y² + 3x² - y²

\implies4x² - 4y²

\implies4 (x² - y²)

Hence proved!

_____________________________________________________________

Similar questions