Math, asked by salgaonkarsaanvi, 1 year ago

If x= log 5 7, y =log 7 27 , z =log 3 5, show that xyz = 3

Answers

Answered by MaheswariS
6

Answer:

xyz=3

Step-by-step explanation:

Formula used:

Base changing rule:

log_a{c}=(log_a{b})(log_b{c})

Power rule:

log_aM^n=n\:log_aM

log_a{a}=1

Given:

x=log_5{7}

y=log_7{27}

z=log_3{5}

Now,

xyz=(log_5{7})(log_7{27})(log_3{5})

xyz=(log_5{27})(log_3{5})

xyz=(log_5{3^3})(log_3{5})

xyz=3(log_5{3})(log_3{5})

xyz=3(log_5{5})

xyz=3(1)

xyz=3

Hence proved.

Similar questions