Math, asked by bettvincentbt, 11 months ago

If x=loga base 2a,y=log2a base 3a,z=log 3a base 4a.Show that xyz+1= 2yz

Answers

Answered by rishu6845
4

Answer:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by silentlover45
8

\underline\mathfrak{Given:-}

  • x=loga base 2a,y=log2a base 3a,z=log 3a base 4a.

\underline\mathfrak{To \: \: Find:-}

  • Show that xyz+1= 2yz ......?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: {x} \: \: = \: \: {log_{2a}} \: \: \: \: {a} \: \: \leadsto \: \: a \: \: = \: \: {(2a)}^{x}

On taking log on both side, we have.

\: \: \: \: \: \leadsto \: \: {log} \: {a} \: \: = \: \: {x} \: {log} \: {2a}

\: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: \frac{log \: {a}}{log \: {2a}}

  • \: \: \: \: \: {x} \: \: = \: \: {log_{3a}} \: \: \: \: {2a} \: \: \leadsto \: \: {2a} \: \: = \: \: {(3a)}^{x}

On taking log on both side, we have.

\: \: \: \: \: \leadsto \: \: {log} \: {2a} \: \: = \: \: {x} \: {log} \: {3a}

\: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: \frac{log \: {2a}}{log \: {3a}}

  • \: \: \: \: \: {x} \: \: = \: \: {log_{4a}} \: \: \: \: {3a} \: \: \leadsto \: \: {3a} \: \: = \: \: {(4a)}^{x}

On taking log on both side, we have.

\: \: \: \: \: \leadsto \: \: {log} \: {3a} \: \: = \: \: {x} \: {log} \: {4a}

\: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: \frac{log \: {3a}}{log \: {4a}}

\: \: \: \: \: \therefore \: \: xyz \: \: = \: \: {\frac{log \: {a}}{log \: {2a}}} \: \times \: {\frac{log \: {2a}}{log \: {3a}}} \: \times \: {\frac{log \: {3a}}{log \: {4a}}}

\: \: \: \: \: \leadsto \: \: xyz \: \: = \: \: {\frac{log \: {a}}{log \: {4a}}}

Now,

\: \: \: \: \: \leadsto \: \: xyz \: +  \: {1}

\: \: \: \: \: \leadsto \: \: \frac{log \: {a}}{log \: {4a}} \: +  \: {1}

\: \: \: \: \: \leadsto \: \: \frac{log \: {a} \: + \: {log \: {4a}}}{log \: {4a}}

\: \: \: \: \: \leadsto \: \: \frac{log \: {4a}^{2}}{log \: {4a}}

\: \: \: \: \: \leadsto \: \: \frac{log \: {(2a)}^{2}}{log \: {4a}}

\: \: \: \: \: \leadsto \: \: \frac{{2} \: log \: {2a}^{2}}{log \: {4a}}

\: \: \: \: \: \leadsto \: \: \frac{{2} \:  log \: {2a}^{2}}{log \: {3a}} \: \times \: \frac{log \: {3a}}{log \: {4a}}

\: \: \: \: \: \leadsto \: \: {2yz}

So, the value of xyz + 1 is 2yz.

Similar questions