Math, asked by Jayakarthi10, 1 year ago

If |x|<1 and y=1+x+x^2+...to infinity, then find the value of dy/dx .


Anonymous: Mate mark my Ans as brainlist if it helps you

Answers

Answered by Anonymous
8

Answer \:  \\  \\ GIVEN \:  \: QUESTION \:  \: Is \:  \:  \\  \\ y = 1 + x + x {}^{2}  + x {}^{3}  + x {}^{4}  + ... +  \infty  \\  \\ The \:  \: above \: series \: is \: in \: gp \: becoz \:  \\ common \: ratio \: is \: same \:  \\  \\ its \: sum \: is \: given \: by \:  \:  \:  \:  \frac{a}{(1 - r)}  \:  \:  \:    \: r &lt; 1 \\  \\ here \:  \: a \:  = 1 \:  \:  \: and \:  \:  \: r =  \frac{x {}^{2} }{x}  = x \\ so \\ y =  \frac{1}{(1 - x)}  \\  \\ now \:  \: differentiate \: both \: sides \: with \:  \\ respect \: to \: x \: we \: have \\  \\  \frac{dy}{dx}  =  \frac{ - 1}{(1 - x) {}^{2} }  \times  - 1 \\  \\  \frac{dy}{dx}  =  \frac{1}{(1 - x) {}^{2} }

Answered by Anonymous
6

Answer \:  \\  \\ GIVEN \:  \: QUESTION \:  \: Is \:  \:  \\  \\ y = 1 + x + x {}^{2}  + x {}^{3}  + x {}^{4}  + ... +  \infty  \\  \\ The \:  \: above \: series \: is \: in \: gp \: becoz \:  \\ common \: ratio \: is \: same \:  \\  \\ its \: sum \: is \: given \: by \:  \:  \:  \:  \frac{a}{(1 - r)}  \:  \:  \:    \: r &lt; 1 \\  \\ here \:  \: a \:  = 1 \:  \:  \: and \:  \:  \: r =  \frac{x {}^{2} }{x}  = x \\ so \\ y =  \frac{1}{(1 - x)}  \\  \\ now \:  \: differentiate \: both \: sides \: with \:  \\ respect \: to \: x \: we \: have \\  \\  \frac{dy}{dx}  =  \frac{ - 1}{(1 - x) {}^{2} }  \times  - 1 \\  \\  \frac{dy}{dx}  =  \frac{1}{(1 - x) {}^{2} }


Anonymous: ☺️
Similar questions